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Interacting Walkers on the Cayley Tree, 
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We obtain the generating function for an ensemble of random walkers on the 
Cayley tree of coordination number z. The pair interaction between walkers is 
taken into account. This forbids two walkers to occupy the same lattice point 
after an equal number of steps. Interacting polymer statistics results from this 
model if one associates time (or the number of steps) with an additional space 
coordinate. The limiting free energy appears in a form that corresponds to the 
phase transition of "3/2 order." 

KEY WORDS: Random walks, Cayley tree, polymer model, phase trans- 
ition. 

'1. I N T R O D U C T I O N  

The properties of one-dimensional interacting strings which are embedded 
in three dimensions are of great importance both in polymer physics and 
biology. A model that reproduces the configurational properties of 
hydrocarbon chains inside a lipid membrane has been proposed by 
Izuyama and Akutsu (1~ (to be referred to as IA). This model is a 
generalization of the two-dimensional model (e) used by Nagle (3) to describe 
a phase transition in the system of noncontact flexible polymer chains. 
Polymers or "dislocation lines" in the IA model appear above the critical 
temperature Tc and may be regarded as directed strings which run ver- 
tically through the lattice and do not intersect one another. 

IA attempted to prove that the model exhibits a second-order phase 
transition of the classical type with a jump in the specific heat C(T), i.e., the 
specific heat is finite as T ~  To + 0 and zero for T< To. However, Bhat- 
tacharjee, Nagle, Huse, and Fisher (4) (see, also Ref. 5) have reconsidered 
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the IA model with a random walk analogy and found that C(T) diverges as 
l n ( T - T o )  when T--* Tc + 0 for d =  3 and is finite for higher dimensions. 

The random walk analogy can be elucidated by identification of the 
vertical Z coordinate with discrete time. An actual question to be solved is 
a random walk problem of walkers on an xy plane lattice with the restric- 
tion that after all walkers have taken the same number of steps, any two of 
them are not at the same site. When n = 2 the problem can be solved 
exactly. (4) The logarithmic law for C(T) follows then from a finite-size 
scaling ansatz, (4) namely, the supposition that the asymptotic behavior of 
two walkers remains true for large n. 

Another approach to this problem has recently been proposed (6) which 
deals directly with an arbitrary number of walkers. Unfortunately, the sign 
of contribution to the partition function in this method depends on 
periodicity of polymers in the vertical direction (assuming periodic boun- 
dary conditions). Neglect of the sign difference called "generalized Bethe 
approximation" leads to the finite jump in C(T). It was noted in Ref. 6 that 
the method becomes exact if the xy plane lattice has the Bethe structure. 
The purpose of the present paper is to obtain explicitly the generating 
function of the above-formulated random walk problem on the Cayley tree. 

In Section 2 we use the general method (6) to reduce the original 
problem to statistics of a single Polya walk. A Polya walk on a Bethe lat- 
tice was investigated by Hughes and Sahimi (7) who extended the Montroll 
generating function formalism (s) to this case and showed that random 
walks on a Bethe lattice do have some qualitative similarities to random 
walks on a hypercubic lattice of dimension d >  4. It is natural to expect 
that the finiteness of the specific heat at Tc follows from this result 
according to the analysis of Ref. 4. However, the true answer is quite dif- 
ferent. In Section 3 we show that the model exhibits 3/2-order transition in 
which the specific heat diverges as ( T -  Tc) -'/2. Thus, the IA model on the 
Bethe lattice demonstrates the two-dimensional behavior (2'3) in spite of 
apparent multidimensional properties of related random walks. 

2. G E N E R A L  C O N S I D E R A T I O N S  

Consider the complete Cayley tree with a coordination number z and 
a central site O. Any other site of the lattice is connected with 0 by a unique 
sequence of bonds. If this sequence consists of l bonds, we assign to the site 
the coordinate l. There are z ( z -  1)t-1 sites with the coordinate l and the 
total number of sites in the graph is 

N = z [ ( z -  1) L -  1] / (z--  2) (1) 

where L is the coordinate of boundary sites. 
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We define an M-stepped walk as a connected path along M bonds 
(perhaps, with repetitions) starting and ending at the same point. The 
returns to the starting point after 2, 4 ..... M - 2  steps are not prohibited. 
Two walks do not intersect if they are not at the same point after equal 
numbers of steps. Denote the statistical weight of one step by X. Then the 
statistical weight of a single M-stepped walk P is defined as 

W ( P )  = X g (2) 

Let gn be an arbitrary configuration of n nonintersecting M-stepped walks 
on the Cayley tree. The weight of configuration gn is given by the product 

z(g,)  = ~ W(PI )=X T M  (3) 
i = 1  

The problem consists in determining the generation function 

N 

Z ( X ) =  Z 2 z ( g , )  (4) 
n = 0  g n  

where summation runs over all possible configurations of n M-stepped 
walks with 0 ~< n ~< N and the weight of the void lattice is unity. 

The polymer model arises from these definitions if one associates time 
(or the number of steps after the start) with the spatial Z coordinate. 
Indeed, the trajectories of walkers moving in a Cayley tree may be regar- 
ded as noncontact polymer chains or "dislocation lines" of the IA model. 
The condition for each M-stepped walk to start and to end at the same 
point means the periodic boundary conditions in Z direction for the 
obtained 3D lattice. Thus, in the three-dimensional pattern, each M-step- 
ped walk is a loop of length M oriented along one spatial direction. 

The partition function of the polymer model results from generating 
function (4) if we attach to the variable X a statistical meaning by setting 
X = e x p ( - / / # ) ,  where /? is the inverse temperature and /~ is a chemical 
potential of a polymer lino. 

Instead of the original problem we consider first a modification of it. 
Let P be a Kwalk if it returns to the starting point after K =  k M  steps for 
some k t> 1 where k is an integer. As above, returns to starting point after 
2, 4 , . ,  K - 2  steps are not prohibited. If k = 1, a K walk is an M-stepped 
walk. If k >  1, a Kwalk  may contain K'-stepped subwalks with K' = k ' M ,  
k ' <  k. A K walk is said to be nonperiodic if it does not contain two or 
more coinciding K-stepped subwalks. 

We introduce the auxiliary functions 

f f / ( P ) = ( - 1 )  X K (5) 
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for K walks and 

~( g.) = ( --1)" X ~ i  

for M-stepped walks. 
The following proposition holds: 

T h e o r e m .  The product 

(6) 

l~ [1 + ffz(p)] (7) 
P 

over all possible nonperiodic K walks P on the Cayley tree equals to the 
sum over all configurations of M-stepped nonintersecting walks including 
the void lattice 

N 

[ I [ I + W ( P ) ] =  ~ ~ 2 ( g . )  (8) 
P n = 0  g n  

The proof of the theorem with more general conditions can be found in 
Ref. 9. Here we only give the sketch of this proof. 

We say that a Kwalk  (K=  kM, k > 1) is self-intersecting if the walker, 
being at some point at the moment 1 (0 ~< l <  ( k - 1 ) M ) ,  visits the same 
point after rM steps; r < k is an integer. The return to the starting point at 
the last step of K walks is not self-intersection by the definition. It is the 
reason why any M-stepped walk cannot be self-intersecting. 

An essential property of the Cayley tree is that any K walk with 
K =  kM, k > 1 is self-intersecting. 

Let us consider the formal infinite product on the left-hand side of 
eq. (8), decomposing it into a sum of products of the form 
ffI(P1) W(P2) ' "  N~(P,). If among the set g, of walks P1 ..... P ,  there are not 
mutually intersecting and self-intersecting ones, the product equals z(g,)  
and contributes to the right-hand side. And vice versa, each term ~(g,) in 
the sum represents the unique product ffl(Pl).- ,  ff/(P,), where P1 ..... P,  
are different M-stepped walks forming the configuration gn. 

Consider now a configuration g,  containing two walks Pi and Pj inter- 
secting at some point. Then three exists a configuration g', which contains, 
in place of two walks Pi and Pj, a single walk P' with self-intersection at 
the same point. The first case is described by the term ( - 1 ) XKi( - 1 ) X Kj in 
the expansion of (7) and the second by the term ( - 1 ) X  K'+xj. Therefore, 
the contributions from mutually intersecting and self-intersecting walk can- 
cel. Similar arguments can be used in the case of several intersection points. 
Thus only terms of the s u m  ~_.gZ(g) survive, where all configurations g 
consist of solely M-stepped walks. 
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It should be remarked that eq. (8) is very similar to the identity 
known as Feynman's conjecture and is proved by Sherman (1~ to get the 
combinatorial solution of the planar Ising model. 

Equation (8) makes it possible to reformulate the random walk 
problem of many walkers into a simpler one of a single particle. For  this 
goal it is necessary to establish a relation between the configuration weight 
x(g) and the auxiliary function )~(g). Let us put 2 =  X e  i~r/M and note that 
the change of variables X ~  #-alters the sign of each M-stepped walk in 
(6). Then ZgZ(g)~ ZgZ(g), and since we assume M ~  o% Z(Y) and Z()7) 
coincide because 2 ~  X in the thermodynamic limit. As a result, we may 
write the generating function in the form 

Z(X) = ~ )~(g) = [I  [1 + fix(p)] (9) 
g P 

On the basis of this equation we have 

in Z(X) = ~ ln[1 + gz(p)] = _ ~  ~ [ -  ff/(P)]Y 
P P j = I  J 

(lO) 

We denote by Rm(i) a set of arbitrary Kwalks which begin anywhere 
and land on the site i after re(rood M) steps 0 ~ m < M. The total number 
of such walks IRm(i)[ obeys, due to the Mperiodici ty in Z direction, the 
following translation relations 

IRo(i)l = IRI(i)I . . . . .  IRM ,(i)t (1~) 

for each i belonging to the Cayley tree. Writing a sum over all sites and 
over M times 

M 1 

~ IRm(i)t (12) 
m = 0  i 

one can note that each K walk enters into the sum K times if it is non- 
periodic, and K/j times if it has periodicity j. Let S"~(i) be the number of 
Kwalks with a fixed K in the set Rm(i). Then we can continue eq. (10) 
regarding [ - f f z ( p ) ] J ,  as a weight of the walk of periodicity j 

[ -  m(P)] ,  M_, xK 
y - E EEs (i) 

m=O i K K 

= - M  Z Z S~ XK 
K (13) 

i K 
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where we convert  the s u m m a t i o n  over  nonper iodic  K walks in the first sum 
into the one over  a rb i t ra ry  K walks. The  sum over  lattice sites can be 
rearranged due to the symmet ry  of the Cayley tree. As a result, we obta in  
for the lattice with a coord ina t ion  n u m b e r  z 

In Z ( X ) =  --M~SK(O)XKK M ~ z ( z -  1) l ~ SK(I)XKK (14) 
K l - - 1  K 

where 

SK(1) = S~ (15) 

if the site i has the coord ina te  l. 

3. S I N G L E  W A L K  G E N E R A T I N G  F U N C T I O N  

The considerat ions in the preceding section lead to the expression 
(14), which we now make  explicit by calculating the sums 

y~ S K( l) X K 
K / = 0 ,  1,..., L (16) 

K 

including SK(1) the number  of a rb i t ra ry  close K-s tepped walks. 
Let W,(ll m) be a n u m b e r  of walks start ing with coordinate  m and 

terminat ing after n steps with coordinate  l. Fol lowing the t rea tment  of 
Hughes  and Sahimi (7) we begin with the evolut ion equat ion  

where 

W,+ l(l l m)= ~ v(l, l') Wn(l' [ m) (17) 
l '  

~(l,l')=(z--1)6l, r+l+6t, c 1 0 < I ' < L  

= z6l, r + 1 1' = 0 (18) 

= 6l, r -  1 l' = L 

The  origin l =  0 and the last shell l = L act as reflecting barriersl Thus  
the r a n d o m  walks on the Cayley tree can be represented as effective biased 
walks on the one-dimensional  lattice with two "defects." The  initial con- 
dit ion is 

Wo(l l m)=fZ, m (19) 

To  separate  t rans la t ion- invar iant  and "defect" par ts  of 7(/, l ') we write 

7(l, l ') = p( l -  l') + q(l, l') (20) 
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where 

and 

p(/) = (z - 1 ) ~)l,l -~ (~l, 1 

q(/,/')=0 I' # 0 ,  l' :~L 

= bt,1-- St,_ 1 l ' = 0  

= - ( z -  1) 5zL+I l ' = L  

Inserting this notation into eq. (17), we obtain 

W.+ l(l [ m ) -  ~ p ( l -  l') W.(l' n m)= ~ q(l, /') W.(l' l m) 
l l' 

It is convenient to introduce a generating function by 

(21) 

(22) 

(23) 

W(ll m; ~)= ~ W,,(ll rn) ~" (24) 
n = O  

From eq. (23) using eq. (24) we have 

W(/ lm;4 ) -4~p( / - l ' )W( l ' lm;~)=6 tm+4~q( l , l ' )W( l ' lm;4 )  (25) 
l' Z' 

A discrete Fourier transform 

yields 

W(0 ] m; 4) 

I~(~ I m; r  ~ eU~W(llm; ~) 

e im~ r i~~ -- e-i~) 
ff'(~o I m; 4 ) -  q 

1 -- 42(go) 1 -- 42((P) 

W(L I m; 4) 
~(Z- -  1) e i (L + I)'p 

where )o(~o) is the "structure factor" 

2(q0)= ~ e"~~176 i~o 
/ = - - o r  

Inverting the Fourier transform we find that 

W(I ] m; ~)= G(l ] m; ~) + r I m; ~) H(I; ~) 

-- 4W(L I m; 4) F(l; 4) 

(26) 

(27) 

(28) 

(29) 
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with G(l l m; 4), H(I; 4), F(I, ~) defined by 

G(l l m; ~ ) = - -  ~ (---~(~o) &o 

l f =  e-it~~176 
H(l; ~ ) = - -  = 1--- ~)T~) ago 

and 

(z-- 1)f~ e i ( L - l + l ) ~ ~  

F( I ;  r  - ~ ~ 1 - ~2(~o) ago 

Put l=  0 and l=  L in eq. (29). We get the system of linear equations 

W(0 m; 4)= G(0 I m; ~) + ~W(0 I m; ~) H(0; ~) 

- CW(L I m; ~) F ( 0 ;  ~) 

W(L m;~)=G(LIm;~)§  

- ~W(L I m; ~) F(L; ~) 

which has the solutions 

W(0[ m; ~ ) = D  - t  det (G(Olm; ~) 

\G(L [ m; ~) 

1 - -  4H(O; {) 
W(L I m; ~)= D -~ det -gH(L; ~) 

where 

( 1  - ~H(O;  ~) 
D = det \ _ ~H(L; ~) 

(30) 

(31 )  

(32) 

(33) 

The summation over j gives 

SK(I) xKt K= • 1 y W,(l l l)  X~t ~exp 2zr i~ - 1  
K .~-0 M j~=l 

(37) 

= Xt exp [2~i(j/M)] 

Up to now we were dealing with the number of arbitrary walks on the 
Cayley tree. To calculate the sums (16), it is necessary to adapt the general 
generating function (24) for M-stepped walks starting and ending at the 
same point. For this goal we put in (24) 

4F(0; r ) (36) 
1 + ~F(L; ~) 

4F(0; 4) ) (34) 
1 + ~F(L; ~) 

G(0 [ m; ~) "] (35) 
G(L [ m; ~)] 
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because only terms with n = 0 (mod M) will survive in the right-hand side 
of eq. (37). Performing the integration over t and changing the summation 
by integration, i.e., setting 

2rcj dfi = 2~ 

we obtain for large M 

SK(l) X K I dt 
~: -~- f;~dfl fo t [W(ll l;xtee~)-!] (38) 

Now, the solution (29) together with eqs. (34) and (35) can be used for 
deriving thermodynamic properties of the system from the partition 
function (14). 

4. T H E R M O D Y N A M I C  PROPERTIES 

In this section we concentrate on the analysis of the partition function 
near the critical point. The question arises where this point is located. It is 
shown in Ref. 4 by simple energy-entropy arguments that for the two- 
dimensional lattice the lowest-lying excited states consist of one M-stepped 
walk. These states have the free energy kT(- ln  X - I n  z), where z is the 
coordination number of the lattice. They will be thermodynamically 
preferred to the ground state only when X >  l/z, which gives the critical 
point of the model. 

Let us begin the analysis by substituting into eq. (38) the first term of 
the right-hand-side of eq. (29). This yields 

ldtV1 ~2~ 1 d - 1 ]  
I1- fo T L Jo 

On formally integrating I1 over t we obtain 

(39) 

';?f? 11= (2rc)2 dfl d~oln]l-Xei~[(z-1)ei~O+e-i~]l (40) 

which leads at z = 2 to the known result for the partition function of the 
two-dimensional polymer model. (2,3) The critical point derived from 
eq. (40) is Xo = 1/z. Indeed, the use of Jensen's formula gives 

1 I lnlX[(z-1)ei~+e-i~]IdcP (41) 
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where 

a = XE(z - 1 ) e i~~ + e -i~o] (42) 

Then, IL = 0  if X < X c =  1/z, and 

4 z2 f (X- Xc) 3/2 
11 = 3g [2(z-- 1)] 1/2 (43) 

in the vicinity of Xc above Xo. 
Let us now consider eq. (38) in more detail, taking into account both 

periodic boundary conditions in the z direction and reflecting boundary 
conditions in the equivalent one-dimensional lattice. Consider again the 
first term of eq. (29) defined by eq. (30). Integral (30) is simply evaluated. 
Denoting 

d(~) = [ 1 - 4 ~ 2 ( z  - 1 )] 1/2 (44) 

and 

1 __ d ( ~ )  ( 4 5 )  
t_+((- 2 ~ ( z - 1 )  

one can show that 

G ( l l m ;  4) = - t '~- 'O(1 - I t + l ) / d ( ~ ) +  tm_-z/d(~) m>~l 

= t+ zO(It+[-- 1)/d(() m < l  
(46) 

Put l = m ;  then G(ll l; ~ ) = 0  for 141 > z  -1, On the other hand, G(ll l; 4) is 
the generating function of all possible walks returning to the starting point 
on the unbounded one-dimensional lattice with the structure factor (28). 
This function can be obtained in a straightforward combinatorial way; the 
result is 

G(Zl Z; ~) = ~ E(z- 1) ~2]K (2K)! 1 (47) 
K=o (K!F d(~) 

This result puts into evidence the problem with which we are confronted. 
The generating function (30) is obtained from the series for nonconstrained 
walks 

G(~) - 1 + ~2(~o) + [~2((o)]2 + 
1 - -  ~ 2 ( ( p )  

(48) 

by the integration which acts as a filter. But the last identity is true only if 
141 <~ 1/z. To deal with the generating functions (30), (31), (32) outside this 
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range, we must analytically continue solution (46), which gives for 1r > 1/z 
expressions of type (47) but not zero. Then, we will obtain 

G ( l l m ; ~ ) = ( t  )m-z/d(r m>~l 

= (t+)m-rid(C) m < l 

H( l ;~)=( t  -t+~)/d(~) / = 0  

= t+t(t+ - tT_~)/d(r l )  1 

F(l; r ( z -  1) tL-l+ l/d(r 

(49) 

(50) 

(51) 

Formula (38) with functions (49), (50), (51) no longer gives the critical 
point xo = 1/z. The location of Xc is determined now by zeros of d(r at 
r  _+2-~(z - 1) 1/2. The function W(ll l; r diverges at ~c. Its critical 
behavior can be found if one treats W(l[ l; r as a generating function of 
one-dimensional unbiased random walks that start at the point l of the 
interval L and return to the same point. Indeed, for each step to the right 
with the weight ~ ( z -  1), there is a step to the left weighted by r So, a pair 
of steps has the weight r  which gives the single step weight 
~ ' = r  m for the effective unbiased walk. The calculation of this 
generating function is a standard random walk problem. (l~ For slightly 
changed boundary conditions (not sufficient in the thermodynamical limit) 
the answer is 

l L 1 +cos[Tcr(2j-  1)/L] (52) 
W(l l l; ~')=-s rZl= 1 - 2 ~ '  cos(~r/L) 

or, for large L 

W( I ~ _--- + &o (53) 
- - l '  l ; - " = 2 7 r  1 -2 r  1 - 2 r  cosq~ } 

Now, we must put r  1/2. The second integral in (53) decreases 
exponentially with j and does not contribute to the free energy. The sub- 
stitution of the first one into eq. (38) gives 

1 [ 1 1]dq) (54) 
I= Jol fo , 0 s  L 1 - =xt( z - 1)lj  cos 

Thus we came again to eq. (39) with z = 2  and the new critical point 
Xo = 2-1(z - 1) -1/2. Proceeding as above we get I = 0  if X <  Xc and 

I =  -(16/3zc)(z-  1) 3/4 ( X -  Xo) 3/2 (55) 
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above x c. The free energy of the model  is given by eqs. (14), (38), and (55). 
In  the case z = 2 ,  eqs. (43) and (55) coincide, but  for z > 2  we obtain 
another  z dependence of the rmodynamic  quantities and another  critical 
point  Xc. 

The obtained 3/2-order transit ion calls for comment .  It was noted in 
the In t roduct ion  that  the phase transit ion of this type occurs in two-dimen- 
sional polymer  models. (2'3) In  our  nota t ion  it is the case z = 2. There is a 
drastic difference between r a n d o m  walk behavior  for z = 2 and z > 2. For  
any pair of  walkers in the former case, its coordinates  11 and l: are strongly 
ordered, say ll >12, at any momen t  of  time, whereas in the latter, per- 
mutat ions  of ll and 12 are permitted. The sole restriction on a walk con- 
figuration for z > 2 is the absence of K-stepped walks with the period 
k = K / M >  1. Nevertheless, our  results show that  this reduced constraint  is 
still too s trong to give the logari thmic singularity of the part i t ion function. 
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